главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
     
 
Оптика /
  Тысячелетняя история развития оптики
  Природа света. Свойства электромагнитного излучения
  Законы оптики и оптические эффекты
  Компоненты оптических схем
  Оптические линзы
  Оптические призмы
  Оптические фильтры
  Фотоприемники
  Брэгговские структуры
  Электрооптические модуляторы
  Поляризационная оптика
  Светоотражатели
  Дифракционные решетки
  Оптические материалы
  Оптические системы
  Свет и энергетика
  Зрение
Волоконная оптика
Спектроскопия
Лазеры
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Фотоэлектронные умножители

Фотоэлектронные умножители Фотоэлектронный умножитель (ФЭУ) представляет собой, электровакуумный прибор, в котором поток электронов, эмитируемый фотокатодом под действием оптического излучения, усиливается в умножительной системе в результате вторичной электронной эмиссии.

Наиболее распространены фотоэлектронные умножители, в которых усиление потока электронов осуществляется при помощи нескольких специальных электродов изогнутой формы — «динодов», обладающих коэффициентом вторичной эмиссии больше 1. Для фокусировки и ускорения электронов на анод и диноды подаётся высокое напряжение (600—3000 В). Иногда также применяется магнитная фокусировка, либо фокусировка в скрещенных электрическом и магнитном полях.

К основным параметрам ФЭУ относится световая анодная чувствительность (отношение анодного фототока к вызывающему его световому потоку при номинальных потенциалах электродов); спектральная чувствительность (равная спектральной чувствительности фотокатода, умноженной на коэффициент усиления умножительной системы; темновой ток (ток в анодной цепи в отсутствие светового потока).

Наиболее широкое применение ФЭУ нашли в ядерной физике в качестве элемента сцинтилляционного счётчика. Счётчик состоит из сцинтиллятора ― вещества, высвечивающего при поглощении ионизирующего излучения, ФЭУ, преобразующего вспышки сцинтиллятора в короткие электрические импульсы, и регистрирующего устройства, измеряющего количество импульсов в единицу времени или их амплитуду. Число вспышек в сцинтилляторе пропорционально количеству поглощённых частиц, а интенсивность вспышек ― энергии частиц.

Подробный материал об устройстве электровакуумных приборов можно найти тут:

Применение фотоэлектронных умножителей

* Хемилюминесценция, биолюминисценция, флуоресценция
* Проточная цитометрия, хромотография
* Анализ состояния окружающей среды
* Неразрушающий контроль
* Счет фотонов, подсчет частиц
* Спектрофотометрия, масспектрометрия
* Дозиметры и радиометры
* Исследования космоса и астрономия
* Клинический анализ, гамма-камеры, компьютерная томография
* Конфокальная и электронная микроскопия
* Ядерная физика и физика высоких энергий
* Гамма-каротаж и скважинная аппаратура
* Рентгеновские дифрактометры
 

По материалам "АЗИМУТ ФОТОНИКС" www.azimp.ru

 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

 
         
 
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru