главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
   
Главная / Лазеры / Различные типы лазеров / Необычные лазеры / Лазеры высокой мощности / Лазерно-плазменный ускоритель нового поколения
 
 
Оптика
Волоконная оптика
Спектроскопия
Лазеры /
  История создания лазеров
  Принципы работы лазера
  Параметры лазерного излучения
  Различные типы лазеров
  Твердотельные лазеры
  Волоконные лазеры
  Сравнение волоконных лазеров и твердотельных лазеров на объемных кристаллах
  Рамановские лазеры
  Полупроводниковые лазеры
  Газовые лазеры
  Лазеры на красителях
  Необычные лазеры
  Парусные лазеры
  Лазерная безопасность
  Юмор
  Ведущие фирмы-производители лазеров. Поставщики лазерного оборудования
  Лазерика
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Лазерно-плазменный ускоритель нового поколения

Рис. 1. Схема двухступенчатого полностью оптического лазерно-плазменного ускорителя электронов длиной несколько миллиметров (описание см. в тексте). Изображение из статьи J. S. Liu et al.</p>
Рис. 1. Схема двухступенчатого полностью оптического лазерно-плазменного ускорителя электронов длиной несколько миллиметров (описание см. в тексте). Изображение из статьи J. S. Liu et al.

Сразу две группы экспериментаторов сконструировали новый двухступенчатый лазерно-плазменный ускоритель. Электронный сгусток создается и ускоряется до энергии около 1 ГэВ одним-единственным лазерным импульсом, причем длина тандема «инжектор плюс ускоритель» не превышает одного сантиметра.

Масштабы современных ускорителей элементарных частиц впечатляют. Длина туннеля Большого адронного коллайдера составляет 27 км, а проектируемый сейчас линейный электрон-позитронный коллайдер следующего поколения будет иметь около 50 километров в длину. Такие колоссальные для научных приборов размеры — не прихоть физиков; они возникают по той простой причине, что современные технологии не способны достаточно быстро ускорять элементарные частицы.

Вообще, ускоряют частицы сильным электрическим полем, причем, чем сильнее поле, тем эффективнее ускорение. В современных ускорителях используется электрическое поле стоячей радиоволны, которую накачивают и удерживают в специальных металлических сверхпроводящих резонаторах. Но у этой методики есть свой технологический предел: если радиоволна будет слишком мощной, по поверхности резонатора будут течь слишком большие токи, и материал таких токов просто не выдержит. Поэтому предел электрических полей в резонаторах на сегодня — примерно 20 мегавольт на метр (МВ/м), и подняться существенно выше этого значения вряд ли удастся. Это означает, что достичь энергии 500 ГэВ (планируемая энергия электронов на будущем линейном коллайдере) можно лишь на длине 25 км, из-за чего линейный коллайдер становится не только исключительно сложным, но и очень дорогим прибором.

Возможным решением этой проблемы может стать принципиально новая технология ускорения элементарных частиц. Такая технология существует — это так называемое кильватерное ускорение электронов в плазме, и оно уже даже было реализовано экспериментально. В этой схеме сверхсильное электрическое поле создается не в металлической структуре, а в маленьком движущемся вперед пузырьке плазмы, который порождается либо сверхсильным лазерным импульсом, либо компактным сгустком частиц. Электронный сгусток влетает в этот пузырек и, словно оседлав волну, за короткое время ускоряется до больших энергий (подробности см. в популярной статье Плазменные ускорители).

Эксперимент показал, что электрическое поле в таком плазменном ускорителе может в тысячи раз(!) превышать то, что достижимо в резонаторах. Например, в 2006 году было достигнуто ускорение электронов до энергии 1 ГэВ на участке длиной чуть более 3 см, что отвечает ускоряющему полю напряженностью 30 ГВ/м. Эти достижения открывают головокружительные перспективы — ведь с помощью технологии кильватерного ускорения тот же электрон-позитронный коллайдер на 500 ГэВ можно, казалось бы, уместить в сотню метров. Однако не всё так просто: есть целый ряд трудностей, которые потребуется преодолеть, прежде чем подобные проекты станут реальностью.

Во-первых, такая методика опробована только на участках длиной в сантиметры (впрочем, сейчас появляются предложения, как эту трудность преодолеть). Поэтому для достижения по-настоящему высоких энергий потребуется ускорять частицы, прогоняя их через множество последовательных «ступеней ускорителя». Однако такое комбинирование ускоряющих ячеек пока что не было реализовано. Во-вторых, ускоритель не должен слишком сильно размазывать сгусток ускоренных частиц ни в пространстве, ни по углам расхождения, ни по энергии.

В июле в журнале Physical Review Letters появились сразу две статьи, в которых сообщается о преодолении этих трудностей. Более конкретно, две группы исследователей независимо друг от друга сконструировали двухступенчатый полностью оптический лазерно-плазменный ускоритель электронов. Схема эксперимента показана на рис. 1. Для примера здесь изображена установка китайской группы физиков; схема эксперимента в статье американской группы была очень похожей.

Сердцем установки являются две соосно соединенных цилиндрических камеры миллиметровых размеров. Первая камера заполнена смесью гелия и кислорода; вторая — чистым гелием. Мощный сверхкороткий фокусированный лазерный импульс проходит последовательно через обе камеры, ионизируя газ и создавая плазменный пузырек сначала в первой, а затем во второй камере. Рабочим газом для создания плазмы и ускорения электронов является гелий, а кислород в первой камере нужен как источник электронов. Установка не зря называется «полностью оптическим ускорителем»: никаких внешних электронов в нее не поступает. Электроны порождаются в первой камере за счет ионизации атомов кислорода под действием лазерной вспышки, там же они предварительно разгоняются, затем впрыскиваются во вторую камеру, разгоняются там еще больше (за счет той же самой лазерной вспышки) и потом выходят наружу.

Таким образом, на длине меньше сантиметра физики умудрились создать целый ускорительный комплекс: инжектор с предварительным ускорителем, линия передачи, а затем основной ускоритель. Подчеркнем, что эти две секции ускорителя работают не независимо, а в едином тандеме: один-единственный сверхкороткий лазерный импульс, идущий сквозь обе камеры, выполняет за один проход всю работу: порождает нужные пузырьки плазмы, генерирует компактный электронный сгусток, а затем разгоняет его в двух камерах.

Опыты показали, что энергия электронного сгустка на выходе зависит как от длины ускоряющей секции, так и от мощности вспышки. Зависимость от мощности лазера оказалась не совсем простой: наибольшая энергия электронов на выходе (0,8 ГэВ) достигалась вовсе не при максимальной мощности вспышки. Это связано с тем, что сгустку электронов надо не просто попасть в плазменный пузырек, но и расположиться как можно ближе к его задней стенке — там электрическое поле сильнее всего.

Рис. 2. Энергетическое (по горизонтали) и угловое (по вертикали) распределение электронов после инжектора (вверху) и на выходе двухступенчатого ускорителя (внизу). Изображение из статьи B. B. Pollock et al.
Рис. 2. Энергетическое (по горизонтали) и угловое (по вертикали) распределение электронов после инжектора (вверху) и на выходе двухступенчатого ускорителя (внизу). Изображение из статьи B. B. Pollock et al.

Еще одним успехом этой двухступенчатой схемы ускорения стали замечательные характеристики сгустка электронов на выходе. На рис. 2 показано распределение электронов по энергии и по угловому расхождению сгустка; изображение вверху отвечает только одной стадии (инжектор без ускорителя), изображение внизу — полному тандему. В обоих случаях по горизонтали показана энергия электронов, по вертикали — угловое расхождение в миллирадианах (угол в один градус — это примерно 17 мрад). Картинки вверху и внизу отличаются разительно. После стадии инжектора электроны разгоняются примерно до 100 МэВ, но их энергия размазана в широком интервале. Однако после прохождение второй ступени ускорителя пучок не только приобретает энергию почти 0,5 ГэВ, но и становится намного компактнее, как по энергии, так и по углам.

Авторы обеих работ отмечают, что нынешнюю схему можно еще оптимизировать, достигнув при этом энергий 10 ГэВ. Таким образом, получение компактных многогэвных электронных сгустков в чисто оптическом и практически настольном эксперименте кажется делом ближайшего будущего. Конечно, такой лазерный ускоритель пока не может тягаться с нынешними большими коллайдерами по светимости (т. е. интенсивности пучков). Однако такому пучку, получаемому на очень компактной и относительно дешевой установке, найдется и множество других применений, как научных, так и прикладных. Напомним, что сейчас в мире существует примерно 20 тысяч ускорителей, из которых только около сотни заняты изучением физики микромира, а остальные используются в биомедицинских целях, в материаловедении, в системах безопасности и т. д. Поэтому любой новый тип компактного ускорителя частиц будет тут же взят на вооружение (см. например новость Первое применение лазерных ускорителей будет медицинским).

Источники:
1) J. S. Liu et al, All-Optical Cascaded Laser Wakefield Accelerator Using Ionization-Induced Injection // Phys. Rev. Lett. 107, 035001 (2011).
2) B. B. Pollock et al, Demonstration of a Narrow Energy Spread, ~0.5GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator // Phys. Rev. Lett. 107, 045001 (2011).

Игорь Иванов

 

 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

             
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru