главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
     
 
Оптика
Волоконная оптика
Спектроскопия /
  История спектроскопии
  Спектральные диапазоны электромагнитного излучения
  Колебательная спектроскопия
  Рамановская спектроскопия (спектроскопия комбинационного рассеяния)
  Спектроскопические приборы и методики
  Фурье-спектроскопия
  Лазерная спектроскопия
  Области применения спектроскопии
Лазеры
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Теория комбинационного рассеяния света

Теория комбинационного рассеяния света

Монохроматический свет, падающий на образец, может быть отражен, поглощен или рассеян. Процесс рассеяния света быть упругим (то есть происходить без обмена энергией между светом и веществом) и неупругим (то есть между светом и веществом может происходить перераспределение энергии).
Упругое рассеяние света называется Релеевским. Оно является преобладающим: в среднем, лишь один фотон из десяти миллионов рассеивается неупруго. При Релеевском рассеянии частота рассеянного света в точности равна частоте света падающего.
Неупругое рассеяние света называется комбинационным (КР), или Рамановским. При комбинационном рассеянии свет и вещество обмениваются энергией. В результате, частота рассеянного света может как уменьшаться (при этом энергия переходит от света к веществу – это Стоксово рассеяние), так и увеличиваться (при этом энергия переходит от вещества к свету – это Анти-Стоксово рассеяние).
Рассеяние можно рассматривать как очень быстрый процесс поглощения и испускания фотона. При подобном поглощении фотона молекула не переходит в устойчивое возбужденное электронное состояние, если энергия фотона недостаточна для этого процесса. Она переходит в нестабильное возбужденное состояние, из которого она излучает фотон через очень короткое время.
При Релеевском рассеянии молекула поглощает фотон из нулевого колебательного уровня, и на него же переходит после излучения. При Стоксовом рассеянии молекула поглощает фотон из нулевого колебательного уровня, но после излучения переходит на первый, поглощая часть энергии фотона. Наоборот, при Анти-Стоксовом рассеянии молекула поглощает фотон из первого колебательного уровня, а после излучения переходит на нулевой, отдавая часть своей энергии излучаемому фотону.
В условиях теплового равновесия заселенность колебательных уровней подчиняется распределению Больцмана, то есть заселенность более высоких уровней уменьшается по экспоненциальному закону. Соответственно, первый уровень заселен в гораздо меньшей степени, чем нулевой, что приводит к гораздо меньшей интенсивности Анти-Стоксовых линий в КР спектре по сравнению с интенсивностью Стоксовых линий.
Как правило, под спектром КР понимают именно его более интенсивную, Стоксову часть. За «ноль» принимают частоту Релеевского рассеяния (то есть частоту источника излучения), а частоту линии в спектре вычисляют вычитанием частоты Стоксовой линии из частоты Релеевского излучения.
В общем случае процесс рассеяния света конкурирует с процессом его поглощения. При поглощении излучения молекула переводится в низшее возбужденное электронное состояние. Обратный переход в основное состояние может быть либо полностью безызлучательным, либо сопровождаться излучением света меньшей частоты. Такое излучение называется фотолюминесценцией. В зависимости от спиновой конфигурации возбужденного электронного состояния фотолюминесценцию подразделяют на флуоресценцию и фосфоресценцию.
Линии фотолюминесценции значительно интенсивнее линий КР. Таким образом, при помощи спектрометра КР, оснащенным подходящим детектором, можно одновременно в одной точке получать спектр КР и спектр фотолюминесценции без каких-либо проблем.
Однако, в некоторых случаях спектр фотолюминесценции может накладываться на спектр КР, что является нежелательным эффектом. Ниже приведен условный спектр КР/фотолюминесценции окрашенного полимера, сильно флуоресцирующего в видимой и ближней ИК области при облучении светом в УФ и видимом диапазонах. В подобных случаях, как правило, стараются подбирать частоту возбуждающего излучения таким образом, чтобы избежать появление интенсивной флуоресценции. Одним из вариантов является применение для возбуждения КР источников излучения в ближнем ИК диапазоне.

Спектр КР большинства органических молекул состоит из линий, отвечающих деформационным и валентным колебаниям химических связей углерода (С) с другими элементами, как правило, водородом (H), кислородом (O) и азотом (N), а также характеристическим колебаниям различных функциональных групп (гидроксильной -OH, аминогруппы -NH2 и т.д.). Эти линии проявляются в диапазоне от 600 см-1 (валентные колебания одинарных С-С связей) до 3600 см-1 (колебания гидроксильной -OH группы). Кроме того, в спектрах органических молекул в диапазоне 250-400 см-1 проявляются деформационные колебания алифатической цепи.
В отличие от ИК спектра, в котором проявляются линии, отвечающие колебательным переходам с изменением дипольного момента, в спектре КР проявляются линии, отвечающие колебательным переходам с изменением поляризуемости молекулы. Таким образом, ИК и КР являются не исключающими, а взаимно дополняющими спектрометрическими методами. Существуют спектрометры КР, позволяющие одновременно в одной точке получать спектры КР и ИК (LAbRAM ARAMIS IR2).
Спектры КР кристаллических решеток содержат линии, соответствующие рассеянию излучения на коллективных возбужденных состояниях решетки, которые в физике твердого тела рассматриваются как квазичастицы. Наиболее распространены КР-активные переходы с участием оптических и акустических фононов, плазмонов и магнонов.

Квазичастица – квант коллективного колебания или возмущения многочастичной системы, обладающий определённой энергией и, как правило, импульсом. Между квазичастицами и обычными частицами существует ряд сходств и отличий. Во многих теориях поля, например конформной теории поля, не делают вообще никаких различий между частицами и квазичастицами. (Википедия)
Фонон – квазичастица, введённая русским учёным И. Таммом. Фонон представляет собой квант колебательного движения атомов кристалла. Концепция фонона оказалась очень плодотворной в физике твёрдого тела. В кристаллических материалах атомы активно взаимодействуют между собой, и рассматривать в них такие термодинамические явления, как колебания отдельных атомов, затруднительно — получаются огромные системы из триллионов связанных между собой линейных дифференциальных уравнений, аналитическое решение которых невозможно. Колебания атомов кристалла заменяются распространением в веществе системы звуковых волн, квантами которых и являются фононы. Спин фонона равен нулю (в единицах h). Фонон принадлежит к числу бозонов и описывается статистикой Бозе-Эйнштейна. Фононы и их взаимодействие с электронами играют фундаментальную роль в современных представлениях о физике сверхпроводников. (Википедия)
Акустический фонон характеризуется при малых волновых векторах линейным законом дисперсии и параллельным смещением всех атомов в элементарной ячейке. Такой закон дисперсии описывает звуковые колебания решетки (поэтому фонон и называется акустическим). (Википедия) Энергия акустических фононов обычно невелика (порядка от 1 см-1 до 30 см-1).
Оптические фононы существуют только в кристаллах, элементарная ячейка которых содержит два и более атомов. Эти фононы характеризуются при малых волновых векторах такими колебаниями атомов, при которых центр тяжести элементарной ячейки остается неподвижным. Энергия оптических фононов обычно достаточно велика (порядка 500 см-1) и слабо зависит от волнового вектора. (Википедия)
Плазмон – квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания свободного электронного газа. Плазмоны играет большую роль в оптических свойствах металлов. Свет с частотой ниже плазменной частоты отражается, потому что электроны в металле экранируют электрическое поле в световой электромагнитной волне. Свет с частотой выше плазменной частоты проходит, потому что электроны не могут достаточно быстро ответить, чтобы экранировать его. В большинстве металлов плазменная частота находится в ультрафиолетовой области спектра, делая их блестящими в видимом диапазоне. В легированных полупроводниках плазменная частота находится обычно в ультрафиолетовой области. (Википедия)
Поверхностные плазмоны (плазмоны, ограниченные поверхностями) сильно взаимодействуют со светом, приводя к образованию поляритонов. Они играют роль в поверхностном усилении КР, комбинационного рассеяния света (SERS) и в объяснении аномалий в дифракции металлов. Поверхностный плазмонный резонанс используется в биохимии, чтобы определять присутствие молекул на поверхности. (Википедия)
Магнон – квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками (например, антиферромагнетиках) могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе-Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, сопровождающемуся рождением или уничтожением магнона.
Концепция магнона была введена в 1930 г. Феликсом Блохом (Felix Bloch) для количественного объяснения феномена уменьшения спонтанной магнетизации в ферромагнетиках. При температуре абсолютного нуля ферромагнетик достигает состояния наименьшей энергии, в котором атомные спины (а так же и магнитные моменты) выстраиваются в одном направлении. По мере повышения температуры спины начинают отклоняться от общего направления, тем самым увеличивая внутреннюю энергию и уменьшая полную намагниченность. Если представить идеально намагниченный ферромагнетик как вакуумное состояние, то состояние при низких температурах, в котором идеальный порядок нарушен небольшим количеством перевёрнутых спинов, можно представить как газ из квазичастиц – магнонов. Каждый магнон уменьшает количество правильно выстроенных спинов на h и полный магнитный момент вдоль оси квантования на gh, где g – это гиромагнитное отношение. (Википедия)

 

www.nytek.ru

 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

 
         
 
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru