главная   оптика   волоконная оптика   спектроскопия   лазеры   лазерные системы
 
     
 
Оптика /
  Тысячелетняя история развития оптики
  Природа света. Свойства электромагнитного излучения
  Скорость света
  Фотон
  Фонон
  Спектральные диапазоны электромагнитного излучения
  Источники света
  Прозрачность вещества
  Параметры электромагнитного излучения. Единицы измерений
  Квантовая запутанность
  Законы оптики и оптические эффекты
  Компоненты оптических схем
  Оптические материалы
  Оптические системы
  Свет и энергетика
  Зрение
Волоконная оптика
Спектроскопия
Лазеры
Лазерные системы
Телекоммуникации и связь
 
Выставки и конференции
Новости науки и лазерной техники
 
О проекте
Ссылки

 

Квантовая запутанность

Квантовая запутанность – это квантовомеханическое явление, которое стали изучать на практике сравнительно недавно – в 1970-е годы. Оно заключается в следующем. Представим себе, что в результате какого-нибудь события родились одновременно два фотона. Получить пару квантово-запутанных фотонов можно, например, светя на нелинейный кристалл лазером с определенными характеристиками. У порождаемых фотонов в паре могут быть разные частоты (и длины волны), но при этом сумма их частот равна частоте исходного возбуждения. У них также ортогональные поляризации в базисе кристаллической решетки, что облегчает их пространственное разделение. При рождении пары частиц должны выполняться законы сохранения, а значит, суммарные характеристики (поляризация, частота) двух частиц имеют заранее известное, строго определенное значение. Из этого следует, что, зная характеристику одного фотона, мы совершенно точно можем узнать характеристику другого. Согласно принципам квантовой механики, до момента измерения частица находится в суперпозиции нескольких возможных состояний, а при измерении суперпозиция снимается и частица оказывается в каком-то одном состоянии. Если проанализировать много частиц, то в каждом состоянии окажется определенный процент частиц, соответствующий вероятности этого состояния в суперпозиции.

 

Изображение кота, полученное при помощи квантовой технологии А что же происходит с суперпозицией состояний у запутанных частиц в момент измерения состояния одной из них? Парадоксальность и контринтуитивность квантовой запутанности заключается в том, что характеристика второго фотона оказывается определена ровно в тот момент, когда мы измерили характеристику первого. Нет, это не теоретическое построение, это суровая правда окружающего мира, подтвержденная экспериментально. Да, она подразумевает наличие взаимодействия, предающегося с бесконечно большой скоростью, превышающей даже скорость света. Как этим пользоваться на благо человечества пока не очень понятно. Есть идеи применения для вычислений на квантовом компьютере, криптографии и коммуникации.

 

Ученым из Вены удалось разработать совершенно новую и крайне контринтуитивную методику получения изображений, основанную на квантовой природе света. В их системе изображение формирует свет, никогда не взаимодействовавший с объектом. В основе технологии лежит принцип квантовой запутанности. Статья об этом опубликована в журнале Nature. В исследовании принимали участие сотрудники Института квантовой оптики и квантовой информации (Institute for Quantum Optics and Quantum Information, IQOQI) Венского центра квантовой науки и технологии (Vienna Center for Quantum Science and Technology, VCQ) и Венского университета.

 

В эксперименте венских ученых один из пары запутанных фотонов обладал длиной волны в инфракрасной части спектра, и именно он проходил через образец. Его собрат обладал длиной волны, соответствующей красному свету и мог детектироваться камерой. Пучок света, генерируемый лазером, делился на две половины, и половины направлялись на два нелинейных кристалла. Объект помещался между двумя кристаллами. Он представлял собой вырезанный силуэт кота – в честь перекочевавшего уже в фольклор персонажа умозрительного эксперимента Эрвина Шредингера. На него направлялся инфракрасный пучок фотонов с первого кристалла. Затем эти фотоны проходили через второй кристалл, где прошедшие сквозь изображение кота фотоны смешивались со свежеродившимися инфракрасными фотонами так, что понять, в каком из двух кристаллов они родились, было совершенно невозможно. Более того, камера и вовсе не детектировала инфракрасные фотоны. Оба пучка красных фотонов объединялись и отправлялись на приемное устройство. Оказалось, что благодаря эффекту квантовой запутанности они хранили всю нужную для создания изображения информацию об объекте.

схема эксперимента

 

К аналогичным результатам привел эксперимент, в котором в качестве изображения использовалась не непрозрачная пластина с вырезанным контуром, а объемное силиконовое изображение, не поглощавшее света, но замедлявшее прохождение инфракрасного фотона и создающее разность фаз между фотонами, прошедшими через разные части изображения. Оказалось, что такая пластика оказывала влияние и на фазу красных фотонов, находящихся в состоянии квантовой запутанности с инфракрасными фотонами, но никогда не проходившими через изображение.

 

Никаких коммерчески доступных камер, детектирующих среднее и длинноволновое инфракрасное излучение на сегодняшний день нет, а они были бы полезны в областях, в которых надо использовать свет с низкой энергией, например в биологии и медицине. Новый метод позволит освещать объект светом одной длины волны, а детектировать свет с другой длиной волны – более удобной.

Но, конечно, теоретическое и просветительское значение этого результата гораздо выше. Он наглядно иллюстрирует с помощью легко детектируемых событий макромира квантовые свойства микромира, которые почти не проявляются в таких ситуациях, и превращает сложные умозрительные теории в изображение кота.

АЛЕКСАНДРА БРУТЕР

www.polit.ru 

 
Кафедра Лазерной техники БГТУ 'Военмех'

Онлайн-конвертер

 
         
 
  разработка сайта NINSIS   190005, Санкт-Петербург, ул. 1-я Красноармейская, д. 1
тел/факс: +7 (812) 316-49-09
www.laser-portal.ru